Regra de três é o processo destinado a resolver problemas que envolvam grandezas diretamente ou inversamente proporcionais. Assim, se em um dado problema temos grandezas diretamente ou inversamente proporcionais, podemos utilizar regra de três simples ou composta para resolver o problema dado.
Se temos três valores e queremos encontrar um deles, usamos a regra de três simples para encontrar esse valor desconhecido.
Se temos mais de três valores, usamos a regra de três composta para encontrar o valor desconhecido do problema.
A regra de três composta você pode achar bem mais difícil de compreender, mas não é tão difícil assim. O processo para resolver é o mesmo da regra de três simples, quebrando o problema em várias partes e analisando separadamente em relação a incógnita, isto é, o valor que queremos achar e verificar se é diretamente ou inversamente proporcional.
Muito comum em problemas do cotidiano, no segundo grau, em concursos, ENEM e vestibulares, você pode encontrar problemas que podem ser resolvidos com esse método.
Acesse as seções abaixo e veja o passo-a-passo para resolver problemas envolvendo regra de três simples e composta.
Regra de Três Simples
Regra de três simples permite encontrar um quarto valor que não conhecemos em um problema, dos quais conhecemos apenas três deles. Assim, encontraremos o valor desconhecido a partir dos três já conhecidos.
Veja os passos para montar o problema e resolver facilmente:
Crie uma tabela e agrupe as grandezas da mesa espécie na mesma coluna.
Identificar se as grandezas são inversamente ou diretamente proporcionais, analisaremos isso no próximo passo.
Montar a equação assim: se as grandezas forem diretamente proporcionais, multiplicamos os valores em cruz, isto é, em forma de X. Se as grandezas forem inversamente proporcionais, invertemos os valores para ficarem diretamente proporcional.
Resolva a equação.
Regra de três simples direta:
Quando temos duas grandezas diretamente proporcionais, ou seja, quando a variação de um deles é semelhante a variação no outro, aumentando ou diminuindo.
Exemplo:
Exercícios resolvidos de regra de três simples direta:
1) Para se construir um muro de 17m² são necessários 3 trabalhadores. Quantos trabalhadores serão necessários para construir um muro de 51m²?
a) 6
b) 8
c) 9
d) 10
e) 12
Há duas grandezas envolvidas (área do muro e número de trabalhadores) e temos três valores conhecidos; portanto, trata-se de um problema de regra de três simples.
Precisamos encontrar o número de trabalhadores para construir 51 m². Para isso, vamos armar o problema para descobrir se temos uma regra de três simples direta ou inversa:
Solução: montando a tabela e agrupando as grandezas de mesma espécie na mesma coluna.
Área Nº de trabalhadores
17 m² 3
51 m² X
Inicialmente, coloquemos uma seta orientada no sentido contrário do X, isto é, para cima. Colocaremos na outra grandeza uma seta de mesmo sentido, caso as grandezas sejam diretamente proporcionais, ou uma seta de sentido contrário, se as grandezas forem inversamente proporcionais.
Perceba que a outra seta terá o mesmo sentido, já que as grandezas são diretamente proporcionais (se aumentarmos a área do muro, devemos aumentar o número de trabalhadores):
Como se trata de uma regra de três simples direta, multiplicamos os valores em cruz, isto é, em X, assim:
Logo, montando a equação:
Portanto, serão necessários 9 trabalhadores para construir um muro de 51m².
Resposta: C
Regra de três simples inversa:
Quando temos duas grandezas inversamente proporcionais, ou seja, quando a variação de uma delas é contrária a variação no outro, quando um aumenta o outro diminui e vice-versa.
Exemplo:
Exercícios resolvidos de regra de três simples inversa:
2) Um automóvel com velocidade de 80 km/h gasta 15 minutos em certo percurso. Se a velocidade for reduzida para 60 km/h, que tempo, em minutos, será gasto no mesmo percurso?
a) 10
b) 12
c) 18
d) 20
e) 24
Solução: montando a tabela e agrupando as grandezas de mesma espécie na mesma coluna.
Velocidade Tempo
80 km/h 15 min.
60 km/h X min.
Inicialmente, vamos colocar uma seta orientada no sentido contrário do X, isto é, para cima.
Temos uma regra de três simples inversa, a seta terá sentido contrário (se diminuímos a velocidade, o tempo do percurso aumenta).
Como se trata de uma regra de três simples inversa, devemos inverter os valores no sentido da seta, assim transformamos em uma regra de três simples direta e então podemos multiplicar em cruz (em X):
Logo, montando a equação:
Portanto, será gasto um tempo de 20 minutos para fazer o mesmo percurso a 60 quilômetro por hora.
Resposta: D
Regra de Três Composta
Regra de três composta, na matemática, é a forma de encontrar um valor desconhecido quando conhecemos três ou mais grandezas diretamente ou inversamente proporcionais.
Exemplos de regra de três composta:
Exercícios resolvidos de regra três composta
1) Numa gráfica existem 3 impressoras off set que funcionam ininterruptamente, 10 horas por dia, durante 4 dias, imprimindo 240.000 folhas. Tendo-se quebrado umas das impressoras e necessitando-se imprimir, em 6 dias, 480.000 folhas, quantas horas por dia deverão funcionar ininterruptamente as duas máquinas restantes?
a) 20
b) 18
c) 15
d) 10
e) 8
Solução: monte a tabela e agrupe as grandezas de mesma espécie na mesma coluna.
Impressoras Horas/Dia Dias Folhas
3 10 4 240.000
2 X 6 480.000
Perceba que se trata de um problema que envolve regra de três composta, pois temos mais de três grandezas conhecidas. Vamos resolver esse problema de regra de três composta, analisando cada grandeza relativamente à grandeza onde está o X. Assim, para resolver regra de três composta você deve reduzir o problema em várias regra de três simples. Se você não sabe com resolver regra de três simples, acesse a seção aqui no site.
Perceba que se trata de um problema que envolve regra de três composta, pois temos mais de três grandezas conhecidas. Vamos resolver esse problema de regra de três composta, analisando cada grandeza relativamente à grandeza onde está o X. Assim, para resolver regra de três composta você deve reduzir o problema em várias regra de três simples. Se você não sabe com resolver regra de três simples, acesse a seção aqui no site.
Analisemos, inicialmente, a grandeza impressoras com horas/dia que é onde se encontra a incógnita, isto é, o X.
Inicialmente, coloquemos uma seta orientada no sentido contrário do X, isto é, para cima. Vamos analisar a outra parte.
Inversa: se diminuímos o número de impressoras, precisamos aumentar a carga horária de trabalho. Assim, coloquemos uma seta contrária, isto é, para baixo.
Agora vamos analisar a grandeza dias com horas/dia, onde está o X.
Inversa: se aumentamos o número de dias de trabalho, podemos diminuir a carga horária de trabalho. Assim, também coloquemos uma seta contrária, isto é, para baixo.
Por último, vamos analisar a grandeza folhas com horas/dia, onde está o X.
Direta: se aumentamos a quantidade de trabalho a ser feito, precisamos aumentar a carga horária de trabalho. Então, neste caso, coloquemos uma seta na mesma direção do X, isto é, para cima.
Juntando tudo, temos:
Então, sempre respeitando o sentido das setas, ou seja, quando for inversa (seta vermelha) invertemos os valores (denominador, parte de baixo, vai para o numerador, parte de cima) e quando for direta deixa como está. Esse processo foi ensinado em regra de três simples, vale também para regra de três composta.
Agora, para resolver, vamos isolar a grandeza que possui a incógnita, isto é, o X, para formarmos a equação. Veja:
Como pode ver, o que está antes da igualdade multiplicamos em cruz, isto é, em X; o que está depois da igualdade multiplicamos em linha. Assim, temos a seguinte equação:
Logo, as máquinas restantes devem funcionar 20 horas/dia para produzir 480.000 folhas em 6 dias.
Resposta: A
Exemplo:
2) 24 operários fazem 2/5 (dois quinto) de determinado serviço em 10 dias, trabalhando 7 horas por dia. Em quantos dias a obra estará terminada, sabendo-se que foram dispensados 4 operários e o regime de trabalho diminuído de uma hora por dia?
a) 8
b) 11
c) 12
d) 21
e) 18
24 operários …. 2/5 trabalho …. 10 dias …. 7 horas/dia
Como já foram feitos 2/5 do trabalho, ou seja, 2 partes de uma tarefa dividida em 5 partes, restam concluir 3 dessas partes.
Solução: montando a tabela e agrupando as grandezas de mesma espécie na mesma coluna.
Operários Partes do Trabalho Dias Horas/Dia
24 2 10 7
20 3 X 6
Coloquemos inicialmente uma seta contrário ao X, isto é, para cima.
Analisando cada grandeza em relação ao X.
Vamos analisar a grandeza operários em relação ao X.
Inversa: diminuindo o número de operários a quantidade de dias aumenta.
Agora, vamos ver como se comporta as partes do trabalho em relação ao X.
Direta: aumentando o trabalho a quantidade de dias aumenta.
Vejamos agora, a jornada diária (horas/dia) em relação ao X.
inversa: diminuindo a jornada diária a quantidade de dias aumenta.
Juntando tudo, temos:
Respeitando o sentido das setas e invertendo as grandezas inversamente proporcionais, ou seja, as setas para baixo (vermelha). O objetivo é transformar as grandezas em diretamente proporcionais. Como ficou diretamente proporcional, colocamos as setas tudo numa só direção (seta azul, para cima, diretamente proporcional). Fica assim:
Isolando a incógnita, isto é, a grandeza onde tem o X. Relembrando, o que está antes da igualdade multiplicamos em cruz, isto é, em X; o que está depois da igualdade multiplicamos em linha. Seguindo o sentido das setas.
Resolvendo a equação:
Logo, a obra será terminada em 21 dias com 20 operários trabalhando 6 horas/dia.
Resposta: D
FONTE:http://www.regradetres.com.br/regra-de-tres-composta.html EM 09/06/2016
A
0 comentários:
Postar um comentário